Convolutional Neural Tensor Network Architecture for Community-Based Question Answering

نویسندگان

  • Xipeng Qiu
  • Xuanjing Huang
چکیده

Retrieving similar questions is very important in community-based question answering. A major challenge is the lexical gap in sentence matching. In this paper, we propose a convolutional neural tensor network architecture to encode the sentences in semantic space and model their interactions with a tensor layer. Our model integrates sentence modeling and semantic matching into a single model, which can not only capture the useful information with convolutional and pooling layers, but also learn the matching metrics between the question and its answer. Besides, our model is a general architecture, with no need for the other knowledge such as lexical or syntactic analysis. The experimental results shows that our method outperforms the other methods on two matching tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SwissAlps at SemEval-2017 Task 3: Attention-based Convolutional Neural Network for Community Question Answering

In this paper we propose a system for reranking answers for a given question. Our method builds on a siamese CNN architecture which is extended by two attention mechanisms. The approach was evaluated on the datasets of the SemEval-2017 competition for Community Question Answering (cQA), where it achieved 7th place obtaining a MAP score of 86.24 points on the Question-Comment Similarity subtask.

متن کامل

Answer Sequence Learning with Neural Networks for Answer Selection in Community Question Answering

In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution neural networks (CNNs) to learning the joint representation of questionanswer pair firstly, and then uses the joint representation as input of the...

متن کامل

Convolutional Deep Neural Networks for Document-Based Question Answering

Document-based Question Answering aims to compute the similarity or relevance between two texts: question and answer. It is a typical and core task and considered as a touchstone of natural language understanding. In this article, we present a convolutional neural network based architecture to learn feature representations of each questionanswer pair and compute its match score. By taking the i...

متن کامل

Convolutional Encoding in Bidirectional Attention Flow for Question Answering

Deep learning systems for complex natural language processing tasks like question answering are often large, cumbersome models that require excessive computational power and time. We seek to address this issue by exploring efficient and parallelizable alternatives to the more computationally expensive components of one of the top-performing question-answering architectures. In particular, we ex...

متن کامل

ABC-CNN: An Attention Based Convolutional Neural Network for Visual Question Answering

We propose a novel attention based deep learning architecture for visual question answering task (VQA). Given an image and an image-related question, VQA returns a natural language answer. Since different questions inquire about the attributes of different image regions, generating correct answers requires the model to have questionguided attention, i.e., the attention on the regions correspond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015